Definition 1.1.1.
A proposition (or statement) is a sentence which has a truth value (either True or False but not both).
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FPropositional-Logic-and-Set-Theory-%28NS-and-SS%29%2FDefinition-and-examples-of-propositions%2FDetermine-which-statements-are-true.xml&entry.2077830997=source%2Fpropositional-logic-and-set-theory%2Fsections%2Fsubsections%2Fsec-propositional-logic%2Fsubsec-definition-and-examples-of-propositions.ptx
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FPropositional-Logic-and-Set-Theory-%28NS-and-SS%29%2FDefinition-and-examples-of-propositions%2FPropositional-definitions.xml&entry.2077830997=source%2Fpropositional-logic-and-set-theory%2Fsections%2Fsubsections%2Fsec-propositional-logic%2Fsubsec-definition-and-examples-of-propositions.ptx
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FPropositional-Logic-and-Set-Theory-%28NS-and-SS%29%2FDefinition-and-examples-of-propositions%2FUsing-definition-of-statement-to-say-whether-or-not-the-sentences-are-statements.xml&entry.2077830997=source%2Fpropositional-logic-and-set-theory%2Fsections%2Fsubsections%2Fsec-propositional-logic%2Fsubsec-definition-and-examples-of-propositions.ptx
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FPropositional-Logic-and-Set-Theory-%28NS-and-SS%29%2FDefinition-and-examples-of-propositions%2FEvaluating-Statements-and-Truth-Values.xml&entry.2077830997=source%2Fpropositional-logic-and-set-theory%2Fsections%2Fsubsections%2Fsec-propositional-logic%2Fsubsec-definition-and-examples-of-propositions.ptx
\(p\) | \(q\) | \(p\text{^}q\) |
---|---|---|
\(T\) | \(T\) | \(T\) |
\(T\) | \(F\) | \(F\) |
\(F\) | \(T\) | \(F\) |
\(F\) | \(F\) | \(T\) |
\(p\) | \(q\) | \(p \vee q\) |
---|---|---|
\(T\) | \(T\) | \(T\) |
\(T\) | \(F\) | \(T\) |
\(F\) | \(T\) | \(T\) |
\(F\) | \(F\) | \(F\) |
\(p\) | \(q\) | \(p \Longrightarrow q\) |
---|---|---|
\(T\) | \(T\) | \(T\) |
\(T\) | \(F\) | \(F\) |
\(F\) | \(T\) | \(T\) |
\(F\) | \(F\) | \(T\) |
\(p\) | \(q\) | \(p \Longleftrightarrow q\) |
---|---|---|
\(T\) | \(T\) | \(T\) |
\(T\) | \(F\) | \(F\) |
\(F\) | \(T\) | \(F\) |
\(F\) | \(F\) | \(T\) |
\(p\) | \(\neg p\) |
---|---|
\(T\) | \(F\) |
\(F\) | \(T\) |
\(p\) | \(q\) | \(\neg q\) | \(p \land \neg q\) |
---|---|---|---|
\(T\) | \(T\) | ||
\(T\) | \(F\) | ||
\(F\) | \(T\) | ||
\(F\) | \(F\) |
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FPropositional-Logic-and-Set-Theory-%28NS-and-SS%29%2FLogical-connectives%2FGive-statement-forms-of-the-axioms-of-an-enigma-and-answer-to-an-enigma-.xml&entry.2077830997=source%2Fpropositional-logic-and-set-theory%2Fsections%2Fsubsections%2Fsec-propositional-logic%2Fsubsec-logical-connectives.ptx
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FPropositional-Logic-and-Set-Theory-%28NS-and-SS%29%2FLogical-connectives%2FTruth-Tables-and-Logical-Connectives-Interchanging-Operators-and-Analyzing-Patterns.xml&entry.2077830997=source%2Fpropositional-logic-and-set-theory%2Fsections%2Fsubsections%2Fsec-propositional-logic%2Fsubsec-logical-connectives.ptx
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FPropositional-Logic-and-Set-Theory-%28NS-and-SS%29%2FLogical-connectives%2FTruth-tables-for-logical-operators.xml&entry.2077830997=source%2Fpropositional-logic-and-set-theory%2Fsections%2Fsubsections%2Fsec-propositional-logic%2Fsubsec-logical-connectives.ptx
The possible truth values of a proposition are often listed in a table, called a truth table. If \(p\) and \(q\) are propositions, then there are four possible combinations of truth values for \(p\) and \(q\text{.}\) That is, \(TT\text{,}\) \(TF\text{,}\) \(FT\) and \(FF\text{.}\) If a third proposition \(r\) is involved, then there are eight possible combinations of truth values for \(p\text{,}\)\(q\) and \(r\text{.}\) In general, a truth table involving β\(n\)β propositions \(p_{1}\text{,}\)\(\ p_{2}\text{,}\)β¦,\(\ p_{n}\) contains \(2^{n}\) possible combinations of truth values. So, we use truth tables to determine the truth value of a compound proposition based on the truth value of its constituent component propositions.
|
\(p\) | \(q\) | \(\neg p\) | \(\neg q\) | \(p \Longrightarrow q\) | \(\neg p \Longrightarrow \neg q\) |
---|---|---|---|---|---|
\(T\) | \(T\) | \(F\) | \(F\) | \(T\) | \(T\) |
\(T\) | \(F\) | \(F\) | \(T\) | \(F\) | \(F\) |
\(F\) | \(T\) | \(T\) | \(F\) | \(T\) | \(T\) |
\(F\) | \(F\) | \(T\) | \(T\) | \(T\) | \(T\) |
\(p\) | \(q\) | \(\neg p\) | \(\neg q\) | \(p \Longrightarrow q\) | \(\neg p \Longrightarrow \neg q\) |
---|---|---|---|---|---|
\(T\) | \(T\) | \(F\) | \(F\) | \(T\) | \(T\) |
\(T\) | \(F\) | \(F\) | \(T\) | \(F\) | \(T\) |
\(F\) | \(T\) | \(T\) | \(F\) | \(T\) | \(F\) |
\(F\) | \(F\) | \(T\) | \(T\) | \(T\) | \(T\) |
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FPropositional-Logic-and-Set-Theory-%28NS-and-SS%29%2FCompound-%28or-complex%29-propositions%2FDetermine-which-ones-of-statements-are-tautologies.xml&entry.2077830997=source%2Fpropositional-logic-and-set-theory%2Fsections%2Fsubsections%2Fsec-propositional-logic%2Fsubsec-compound-%28or-complex%29-propositions.ptx
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FPropositional-Logic-and-Set-Theory-%28NS-and-SS%29%2FCompound-%28or-complex%29-propositions%2FDetermine-contrapositive%2C-converse%2C-inverse%2C-negation-of-a-condition-statement.xml&entry.2077830997=source%2Fpropositional-logic-and-set-theory%2Fsections%2Fsubsections%2Fsec-propositional-logic%2Fsubsec-compound-%28or-complex%29-propositions.ptx
\(p\) | \(\neg p\) | \(p \vee \neg p\) | \(p \land \neg p\) |
---|---|---|---|
\(T\) | \(F\) | \(T\) | \(F\) |
\(F\) | \(T\) | \(T\) | \(F\) |
\(p\) | \(q\) | \(q \Longrightarrow p\) | \(p \Longrightarrow (q \Longrightarrow p)\) |
---|---|---|---|
\(T\) | \(T\) | \(T\) | \(T\) |
\(T\) | \(F\) | \(T\) | \(T\) |
\(F\) | \(T\) | \(F\) | \(T\) |
\(F\) | \(F\) | \(T\) | \(T\) |
\(p\) | \(q\) | \(\neg q\) | \(p \land \neg q\) | \(p \Longrightarrow q\) | \(\left( p \Longrightarrow q \right) \Longleftrightarrow (p \land \neg q)\) |
---|---|---|---|---|---|
\(T\) | \(T\) | \(F\) | \(F\) | \(T\) | \(F\) |
\(T\) | \(F\) | \(T\) | \(T\) | \(F\) | \(F\) |
\(F\) | \(T\) | \(F\) | \(F\) | \(T\) | \(F\) |
\(F\) | \(F\) | \(T\) | \(F\) | \(T\) | \(F\) |
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FPropositional-Logic-and-Set-Theory-%28NS-and-SS%29%2FTautology-and-contradiction%2FDetermine-which-ones-of-statements-are-tautologies.xml&entry.2077830997=source%2Fpropositional-logic-and-set-theory%2Fsections%2Fsubsections%2Fsec-propositional-logic%2Fsubsec-tautology-and-contradiction.ptx
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FPropositional-Logic-and-Set-Theory-%28NS-and-SS%29%2FTautology-and-contradiction%2FDetermine-contrapositive%2C-converse%2C-inverse%2C-negation-of-a-condition-statement.xml&entry.2077830997=source%2Fpropositional-logic-and-set-theory%2Fsections%2Fsubsections%2Fsec-propositional-logic%2Fsubsec-tautology-and-contradiction.ptx