Definition 1.1.1.
A proposition (or statement) is a sentence which has a truth value (either True or False but not both).
| \(p\) | \(q\) | \(p\text{^}q\) |
|---|---|---|
| \(T\) | \(T\) | \(T\) |
| \(T\) | \(F\) | \(F\) |
| \(F\) | \(T\) | \(F\) |
| \(F\) | \(F\) | \(T\) |
| \(p\) | \(q\) | \(p \vee q\) |
|---|---|---|
| \(T\) | \(T\) | \(T\) |
| \(T\) | \(F\) | \(T\) |
| \(F\) | \(T\) | \(T\) |
| \(F\) | \(F\) | \(F\) |
| \(p\) | \(q\) | \(p \Longrightarrow q\) |
|---|---|---|
| \(T\) | \(T\) | \(T\) |
| \(T\) | \(F\) | \(F\) |
| \(F\) | \(T\) | \(T\) |
| \(F\) | \(F\) | \(T\) |
| \(p\) | \(q\) | \(p \Longleftrightarrow q\) |
|---|---|---|
| \(T\) | \(T\) | \(T\) |
| \(T\) | \(F\) | \(F\) |
| \(F\) | \(T\) | \(F\) |
| \(F\) | \(F\) | \(T\) |
| \(p\) | \(\neg p\) |
|---|---|
| \(T\) | \(F\) |
| \(F\) | \(T\) |
| \(p\) | \(q\) | \(\neg q\) | \(p \land \neg q\) |
|---|---|---|---|
| \(T\) | \(T\) | ||
| \(T\) | \(F\) | ||
| \(F\) | \(T\) | ||
| \(F\) | \(F\) |
The possible truth values of a proposition are often listed in a table, called a truth table. If \(p\) and \(q\) are propositions, then there are four possible combinations of truth values for \(p\) and \(q\text{.}\) That is, \(TT\text{,}\) \(TF\text{,}\) \(FT\) and \(FF\text{.}\) If a third proposition \(r\) is involved, then there are eight possible combinations of truth values for \(p\text{,}\)\(q\) and \(r\text{.}\) In general, a truth table involving β\(n\)β propositions \(p_{1}\text{,}\)\(\ p_{2}\text{,}\)β¦,\(\ p_{n}\) contains \(2^{n}\) possible combinations of truth values. So, we use truth tables to determine the truth value of a compound proposition based on the truth value of its constituent component propositions.
|
| \(p\) | \(q\) | \(\neg p\) | \(\neg q\) | \(p \Longrightarrow q\) | \(\neg p \Longrightarrow \neg q\) |
|---|---|---|---|---|---|
| \(T\) | \(T\) | \(F\) | \(F\) | \(T\) | \(T\) |
| \(T\) | \(F\) | \(F\) | \(T\) | \(F\) | \(F\) |
| \(F\) | \(T\) | \(T\) | \(F\) | \(T\) | \(T\) |
| \(F\) | \(F\) | \(T\) | \(T\) | \(T\) | \(T\) |
| \(p\) | \(q\) | \(\neg p\) | \(\neg q\) | \(p \Longrightarrow q\) | \(\neg p \Longrightarrow \neg q\) |
|---|---|---|---|---|---|
| \(T\) | \(T\) | \(F\) | \(F\) | \(T\) | \(T\) |
| \(T\) | \(F\) | \(F\) | \(T\) | \(F\) | \(T\) |
| \(F\) | \(T\) | \(T\) | \(F\) | \(T\) | \(F\) |
| \(F\) | \(F\) | \(T\) | \(T\) | \(T\) | \(T\) |
| \(p\) | \(\neg p\) | \(p \vee \neg p\) | \(p \land \neg p\) |
|---|---|---|---|
| \(T\) | \(F\) | \(T\) | \(F\) |
| \(F\) | \(T\) | \(T\) | \(F\) |
| \(p\) | \(q\) | \(q \Longrightarrow p\) | \(p \Longrightarrow (q \Longrightarrow p)\) |
|---|---|---|---|
| \(T\) | \(T\) | \(T\) | \(T\) |
| \(T\) | \(F\) | \(T\) | \(T\) |
| \(F\) | \(T\) | \(F\) | \(T\) |
| \(F\) | \(F\) | \(T\) | \(T\) |
| \(p\) | \(q\) | \(\neg q\) | \(p \land \neg q\) | \(p \Longrightarrow q\) | \(\left( p \Longrightarrow q \right) \Longleftrightarrow (p \land \neg q)\) |
|---|---|---|---|---|---|
| \(T\) | \(T\) | \(F\) | \(F\) | \(T\) | \(F\) |
| \(T\) | \(F\) | \(T\) | \(T\) | \(F\) | \(F\) |
| \(F\) | \(T\) | \(F\) | \(F\) | \(T\) | \(F\) |
| \(F\) | \(F\) | \(T\) | \(F\) | \(T\) | \(F\) |