Skip to main content
Contents
Dark Mode Prev Up Next
\(\newcommand{\N}{\mathbb N} \newcommand{\Z}{\mathbb Z} \newcommand{\Q}{\mathbb Q} \newcommand{\R}{\mathbb R}
\newcommand{\lt}{<}
\newcommand{\gt}{>}
\newcommand{\amp}{&}
\definecolor{fillinmathshade}{gray}{0.9}
\newcommand{\fillinmath}[1]{\mathchoice{\colorbox{fillinmathshade}{$\displaystyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\textstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptstyle \phantom{\,#1\,}$}}{\colorbox{fillinmathshade}{$\scriptscriptstyle\phantom{\,#1\,}$}}}
\)
Chapter 2 The Real and Complex Number Systems
In everyday life, knowingly or unknowingly, we are doing with numbers. Therefore, it will be nice if we get familiarized with numbers. Whatever course (which needs the concept of mathematics) we take, we face with the concept of numbers directly or indirectly. For this purpose, numbers and their basic properties will be introduced under this chapter.
Objectives: Objective of the Chapter
At the end of this chapter, students will be able to:
check the closure property of a given set of numbers on some operations
determine the GCF and LCM of natural numbers
apply the principle of mathematical induction to prove different mathematical formulae
determine whether a given real number is rational number or not
plot complex numbers on the complex plane
convert a complex number from rectangular form to polar form and vice-versa
extract roots of complex numbers