Skip to main content

BASIC MATHEMATICS FOR NATURAL SCIENCES UNDERGRADUATE STUDENT TEXTBOOK

Section 2.2 The set of complex numbers

The positive integers (natural numbers) were invented to count things. The negative integers were introduced to count money when we owed more than we had. The rational numbers were invented for measuring quantities. Since quantities like voltage, length and time can be measured using fractions, they can be measured using the rational numbers.
The real numbers were invented for wholly mathematical reasons: it was found that there were lengths such as the diagonal of the unit square which, in principle, couldn’t be measured by the rational numbers, instead they can be measured using real numbers.
The complex numbers were invented for purely mathematical reasons, just like the real numbers and were intended to make things neat and tidy in solving equations. They were regarded with deep suspicion by the more conservative folk for a century. Complex numbers are points in the plane, together with a rule telling you how to multiply them. They are two-dimensional, whereas the real numbers are one dimensional.
Equations of the form \(x^{2} + 1 = 0\)has no solution on the set of real numbers. Therefore, the set of complex numbers permits us to solve such equations.

Definition 2.2.1.

The set of complex numbers is denoted by \(\mathbb{C}\) and is described by \(\mathbb{C} = \left\{ \ \frac{z}{z} = x + \text{iy},\ x,\ y \in \Re\ \text{and}\ i^{2} = - 1\ \right\}\text{.}\)
Note: If \(x = 0\text{,}\) the number is called purely imaginary and if \(y = 0\text{,}\) the number is called purely real.
Complex numbers can be defined as an order pair \((x, y)\) of real numbers that can be interpreted as points in the complex plane (z- plane) with coordinates \(x\) and \(y\text{.}\)

Example 2.2.2.

Find the real \(\&\) imaginary part of the following complex numbers :
\(\ \text{(a)}\ \text{z} = 3 + 7i\)
Solution: real part \(= 3\) & imaginary part \(= 7\)
\(\ \text{(b)}\ \text{z} = 1 - i\)
Solution: real part \(= 1\) & imaginary part \(= -1\)

Subsection 2.2.1 Plotting complex numbers

Any complex number \(z = x + iy \) can be drawn in the complex plane as below :
\begin{equation*} \textbf{Equality of Complex numbers} \end{equation*}
Two complex numbers \(z_1 = a + ib\) and \(z_2 = c + id\) are equal iff \(a = c \) & \(b = d \text{.}\)

Example 2.2.4.

If \(z_1 = 2 + ix\) and \(z_2 = y + 6i\) are equal, then find the value of \(x\) & \(y\text{.}\)
Solution.
\(x = 6\text{,}\) \(y = 2\text{.}\)

Checkpoint 2.2.5.

Add review
 1 
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FThe-Real-and-Complex-Number-Systems-%28NS%29%2FPlotting-complex-numbers%2FPlotting-complex-numbers-on-an-Argand-diagram.xml&entry.2077830997=source%2Fthe-real-and-complex-number-systems%2Fsections%2Fsubsections%2Fsec-the-set-of-complex-numbers%2Fsubsec-plotting-complex-numbers.ptx

Checkpoint 2.2.6.

Add review
 2 
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FThe-Real-and-Complex-Number-Systems-%28NS%29%2FPlotting-complex-numbers%2FInterpreting-complex-numbers-on-an-Argand-diagram.xml&entry.2077830997=source%2Fthe-real-and-complex-number-systems%2Fsections%2Fsubsections%2Fsec-the-set-of-complex-numbers%2Fsubsec-plotting-complex-numbers.ptx

Subsection 2.2.2 Operations on Complex numbers

Example 2.46\(\ \text{Let}\ z_{1} = a + ib\ \text{and}\ z_{2} = c + id,\ \text{be}\ \text{any}\ \text{two}\ \text{complex}\ \text{numbers},\ \text{then}\)
\(\ i)\ z_{1} + z_{2} = (a + c) + i (b + d )\)
\(\ ii)\ z_{1} - z_{2} = (a - c) + i (b - d )\)
\(\ iii)\ z_{1}\text{.}\ z_{2} = (a + ib) \text{.} (c + id) = a(c + id ) + ib(c + id ) = ac + iad + ibc - bd = (ac - bd ) + i (ad + bc)\)
\(\ iv)\ \frac{z_{1}}{z_{2}} = \frac{(a + ib)}{(c + id )} \text{,} \ z_2 \neq 0\text{.}\)

Example 2.2.7.

If\(\ z_{1} = 2 + 3i\) and \(\ z_{2} = 4 + i\text{,}\) then find \(a)\ z_{1} + z_{2} \ b)\ \ z_{1} - z_{2}\ \ c)\ z_{1}\text{.}\ z_{2}\ \ d)\ \frac{z_{1}}{z_{2}}\)
Solution.
\(a )\ z_{1} + z_{2}\ = 6 + 4i\)
\(b )\ \ z_{1} - z_{2}\ \ = - 2 + 2i\)
\(c )\ z_{1}\text{.}\ z_{2}\ \ = (2 + 3i )\text{.} (4 + i ) = 8 + 2i + 12i - 3 = 5 + 14i\)
\(d)\ \frac{z_{1}}{z_{2}} = \frac{2 + 3i}{4 + i}\)

Checkpoint 2.2.8.

Add review
 3 
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FThe-Real-and-Complex-Number-Systems-%28NS%29%2FOperations-on-complex-numbers%2FComplex-Number-Operations-%28multplication-and-division%29.xml&entry.2077830997=source%2Fthe-real-and-complex-number-systems%2Fsections%2Fsubsections%2Fsec-the-set-of-complex-numbers%2Fsubsec-operations-on-complex-numbers.ptx

Checkpoint 2.2.9.

Add review
 4 
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FThe-Real-and-Complex-Number-Systems-%28NS%29%2FOperations-on-complex-numbers%2FComplex-Number-Operations.xml&entry.2077830997=source%2Fthe-real-and-complex-number-systems%2Fsections%2Fsubsections%2Fsec-the-set-of-complex-numbers%2Fsubsec-operations-on-complex-numbers.ptx

Checkpoint 2.2.10.

Add review
 5 
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FThe-Real-and-Complex-Number-Systems-%28NS%29%2FOperations-on-complex-numbers%2FExponent-Simplification-and-Writing-in-the-Form-%28a%5En-b%5Em-%29.xml&entry.2077830997=source%2Fthe-real-and-complex-number-systems%2Fsections%2Fsubsections%2Fsec-the-set-of-complex-numbers%2Fsubsec-operations-on-complex-numbers.ptx

Subsection 2.2.3 Conjugate of a complex number

Definition 2.2.11.

The conjugate of a complex number z = x+iy is denoted by \(\ \overline{z}\) and is defined as \(\ \overline{z}\) = x-iy. It can be represented by the point (x, -y) which is the reflection of the point (x, y) about the x-axis.
\begin{equation*} \textbf{Properties of Conjugate} \end{equation*}
\(a. \overline{\overline{z}} = z\)
\(b. z + \overline{z} = 2x =2Re{(z)} = 2 \left (\frac{z + \overline{z}}{2} \right )\)
\(c. z - \overline{z} = 2iy = 2Im{(z)}\)
\(d. \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}\)
\(e. \overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}\)
\(f. \overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}\)
\(g. \overline{({\frac{z_1}{z_2}})} = \frac{\overline{z_1}}{\overline{z_2}}\)
proof : a) let \(z = x + iy\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \Rightarrow \overline{z} = x - iy\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \Rightarrow \overline{\overline{z}} = x + iy = z\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \therefore \ \overline{\overline{z}} = z\text{.}\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ d) \ \text{Let} \ z_{1} = x_{1} + iy_{1} \) & \(z_{2} = x_{2} + iy_{2}\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \Rightarrow \overline{z_{1}} = x_{1} - iy_{1} \ \ \ \) & \(\ \ z_{2} = x_{2} - iy_{2}\)
Now \(\overline{z_1 + z_2} = \overline{(x_{1} + iy_{1}) + (x_{2} + iy_{2})} = \overline{(x_{1} + x_{2}) + i(y_{1} + y_{2})} = (x_{1} + x_{2}) + i(y_{1} + y_{2})\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = x_{1} - iy_{1} + x_{2} - iy_{2}\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \overline{z_1} + \overline{z_2}\)
The others are left for the reader.

Checkpoint 2.2.13.

Add review
 6 
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FThe-Real-and-Complex-Number-Systems-%28NS%29%2FConjugate-of-a-complex-number%2FOperation-of-complex-number-using-conjugate-property.xml&entry.2077830997=source%2Fthe-real-and-complex-number-systems%2Fsections%2Fsubsections%2Fsec-the-set-of-complex-numbers%2Fsubsec-conjugate-of-a-complex-number.ptx

Checkpoint 2.2.14.

Add review
 7 
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FThe-Real-and-Complex-Number-Systems-%28NS%29%2FConjugate-of-a-complex-number%2FFinding-conjugate-of-a-complex-number.xml&entry.2077830997=source%2Fthe-real-and-complex-number-systems%2Fsections%2Fsubsections%2Fsec-the-set-of-complex-numbers%2Fsubsec-conjugate-of-a-complex-number.ptx

Subsection 2.2.4 Modulus (Norm) of a complex number

Definition 2.2.15.

The modulus of a complex number z = x+iy is a non-negative real number denoted by \(\left |z \right |\) and is defined as \(\left |z \right |\) = \(\sqrt{x^{2} + y^{2}}\text{.}\) Geometrically, the number \(\left |z \right |\) represents the distnce between the point (x, y) and the origin.

Example 2.2.16.

Find the modulus of the complex number \(z = 3 - 4i\text{.}\)
Solution.
The modulus of the complex number \(z = 3 - 4i\)
\(|z| = \sqrt{(3)^{2} + (-4)^{2}} = \sqrt{9 + 16} = \sqrt{25} = 5\text{.}\)
\begin{equation*} \textbf{Properties of modulus} \end{equation*}
a. \(\left |z \right |\) = \(\left |\overline{z} \right |\)
b. \(\left | z^{2} \right | = z \cdot \overline{z}\)
c. \(\left |z_{1} \cdot z_{2} \right | = \left |z_{1} \right | \cdot \left |z_{2} \right |\)
d. \(\left | \frac{z_{1}}{z_{2}} \right | = \frac{\left |z_{1} \right |}{\left |z_{2} \right |}\ \ \ \ \ \ \ \ \) (if \(z_{2} \neq 0\))
e. \(\left |z_{1} + z_{2} \right | \leq \left |z_{1} \right | + \left |z_{2} \right | \ldots \ldots\ldots\ldots\ldots\) triangle inequality
f. \(\left |z_{1} - z_{2} \right | \geq \left |z_{1} \right | - \left |z_{2} \right |\)
proof \((a) \ \ \text{let} \ \ \ z = x + iy \ \ \ \ \text{from} \ \ \ \text{which} \ \ \ \ \ \overline{z} = x - iy\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \Rightarrow \left |z \right | = \sqrt{x^{2} + y^{2}} \ \ \ \ \ \ \ \ \ \ \ \Rightarrow \left |\overline{z} \right | = \sqrt{x^{2} + y^{2}}\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \therefore \left |z \right | = \left |\overline{z} \right |\)
proof \((b) \ \ \text{let} \ \ \ z = x + iy \ \ \ \ \text{from} \ \ \ \text{which} \ \ \ \ \ \overline{z} = x - iy\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \Rightarrow \left |z \right |^{2} = x^{2} + y^{2}\)
Now \(\ \ \ \ z\cdot\overline{z} = (x - iy) \cdot (x - iy) = x^{2} + y^{2}\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \therefore \left |z \right |^{2} = z \cdot \overline{z}\)
proof \((c) \ \ \ \left |z_{1} \cdot z_{2} \right |^{2} = (z_{1} \cdot z_{2})(\overline{{z_{1}} \cdot z_{2}}) = (z_{1} \cdot z_{2})(\overline{z_{1}} \cdot \overline{z_{2}}) = z_{1} \cdot \overline{z_{1}} \cdot z_{2} \cdot \overline{z_{2}}\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \left |z_{1} \right |^{2} \cdot \left |z_{2} \right |^{2}\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = (\left |z_{1} \right | \cdot \left |z_{2} \right |)^{2} \cdots\cdots\cdots\cdots\cdots from \ \ (b)\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \Rightarrow \left |z_{1} \cdot z_{2} \right | = \left |z_{1} \right | \cdot \left |z_{2} \right |\)
proof \((d) \ \ \ \left | \frac{z_{1}}{z_{2}} \right | = \sqrt{\frac{z_{1} \cdot \overline{z_{1}}}{z_{2} \cdot \overline{z_{2}}}} = \sqrt{\frac{\left |z_{1} \right |^{2}}{\left |z_{2} \right |^{2}}} = \frac{\left |z_{1} \right |}{\left |z_{2} \right |}\) (if \(z_{2} \neq 0\))
The others are left for the reader.

Checkpoint 2.2.17.

Add review
 8 
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FThe-Real-and-Complex-Number-Systems-%28NS%29%2FModulus-%28norm%29-of-a-complex-number%2FModulus-and-Argument-of-a-Complex-Number.xml&entry.2077830997=source%2Fthe-real-and-complex-number-systems%2Fsections%2Fsubsections%2Fsec-the-set-of-complex-numbers%2Fsubsec-modulus-norm-of-a-complex.ptx

Checkpoint 2.2.18.

Add review
 9 
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FThe-Real-and-Complex-Number-Systems-%28NS%29%2FModulus-%28norm%29-of-a-complex-number%2FFinding-the-modulus-of-a-complex-number.xml&entry.2077830997=source%2Fthe-real-and-complex-number-systems%2Fsections%2Fsubsections%2Fsec-the-set-of-complex-numbers%2Fsubsec-modulus-norm-of-a-complex.ptx

Checkpoint 2.2.19.

Add review
 10 
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FThe-Real-and-Complex-Number-Systems-%28NS%29%2FModulus-%28norm%29-of-a-complex-number%2FModulus-of-complex-numbers.xml&entry.2077830997=source%2Fthe-real-and-complex-number-systems%2Fsections%2Fsubsections%2Fsec-the-set-of-complex-numbers%2Fsubsec-modulus-norm-of-a-complex.ptx

Subsection 2.2.5 Additive and multiplicative inverses

Let z = x+iy be a complex number, then
  1. its additive inverse denoted by \((- z )\) is given by : \(-z = - ( x + iy) = - x - iy\text{.}\)
  2. its multiplicative inverse denoted by \(z ^{-1}\) is given by : \(z^{-1} = \frac{1}{x + iy} = \frac{x}{x^{2} + y^{2}} - \frac{iy}{x^{2} + y^{2}}\text{.}\)

Example 2.2.20.

Find the additive and multiplicative inverses of the complex number \(z = 3 + 4i\text{.}\)
Solution.
\(z = 3 + 4i\text{.}\)
\(i) -z = -3 - 4i\)
\(ii) z^{-1} = \frac{1}{3 + 4i} = \frac{1}{3 + 4i} \cdot \frac{3 - 4i}{3 - 4i} = \frac{3}{25} - \frac{4i}{25}\text{.}\)

Checkpoint 2.2.21.

  1. Verify that
    1. \(\displaystyle (\sqrt{2} - i) - i (1 - \sqrt{2i}) = -2i\)
    2. \(\displaystyle (2, -3)(-2, 1) = (-1, 8)\)
    3. \(\displaystyle (3, 1)(3, -1)(\frac{1}{5}, \frac{1}{10}) = (2, 1)\)
    4. \(\displaystyle (2 + 3i)^2 - (3i - 6) = 1+9i\)
  2. Show that
    1. \(\displaystyle Re(iz) = -Im(z)\)
    2. \(\displaystyle Im(iz) = Re(z)\)
    3. \(\displaystyle (z + 1)^{2} = z^{2} + 2z + 1\)
  3. Do the following operations and simplify your answer.
    1. \(\displaystyle \frac{1 + 2i}{3 - 4i} + \frac{2 - i}{5i}\)
    2. \(\displaystyle \frac{5i}{(1 - i)(2 - i)(3 - i)}\)
    3. \(\displaystyle (1 - i)^{3}\)

Checkpoint 2.2.22.

Add review
 11 
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FThe-Real-and-Complex-Number-Systems-%28NS%29%2FAdditive-and-multiplicative-inverses%2FAdditive-and-multiplicative-inverses.xml&entry.2077830997=source%2Fthe-real-and-complex-number-systems%2Fsections%2Fsubsections%2Fsec-the-set-of-complex-numbers%2Fsubsec-additive-and-multiplicative-inverses.ptx

Checkpoint 2.2.23.

Add review
 12 
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FThe-Real-and-Complex-Number-Systems-%28NS%29%2FAdditive-and-multiplicative-inverses%2FComplex-Number-Operations-in-Trigonometric-Form.xml&entry.2077830997=source%2Fthe-real-and-complex-number-systems%2Fsections%2Fsubsections%2Fsec-the-set-of-complex-numbers%2Fsubsec-additive-and-multiplicative-inverses.ptx

Subsection 2.2.6 Argument (Amplitude) of a complex number

Definition 2.2.24.

Argument of a complex number \(z = x+iy\) is the angle formed by the complex number \(z = x+iy\) with the positive x-axis. The argument of a complex number \(z = x+iy\) is deonted by \(\textbf{argz}\) and is given by arg(z) = \(\text{tan}^{- 1}(\frac{y}{x})\text{.}\)
The particular argument of \(z\) that lies in the range \(- \pi < \theta \leq \pi\) is called the principal argument of \(z\) and is dented by Argz.
Notes : \(i) Argz \ \ \in \left ( -\pi , \pi \right ]\text{.}\)
\(\ \ \ \ \ \ \ \ \ \ \ \ ii) \text{If} \ 0 \leq \ \text{Argz} \ \leq \pi,\) move counter clock wise direction, if not move the other direction.

Example 2.2.25.

Find the argument of the following complex numbers:
  1. \(\displaystyle z = 1 + i\)
  2. \(\displaystyle z = - 2 + 2 \sqrt{3i}\)
  3. \(\displaystyle z = - \sqrt{3} - i\)
Solution.
\(a) \ \ z = 1 + i\)
\(\text{Arg}z = \text{tan}^{- 1}\left(\frac{1}{1}\right) = \text{tan}^{- 1}\left(1 \right) = \frac{\pi}{4}\)
\(b) \ \ z = - 2 + 2 \sqrt{3}i\)
\(\text{Arg}z = \text{tan}^{- 1}\left(\frac{2 \sqrt{3}}{-2}\right) = \text{tan}^{- 1}(-\sqrt{3}) = \frac{2 \pi}{3}\)
\(c) \ \ z = - \sqrt{3} - i\)
\(\text{Arg}z = \text{tan}^{- 1}\left(\frac{-1}{-\sqrt{3}}\right) = \text{tan}^{- 1}\left(\frac{1}{\sqrt{3}}\right) = \frac{-5 \pi}{6}\)
\begin{equation*} \textbf{Properties of Arguments} \end{equation*}
\(i) \ \ \text{Arg}(z_{1} \cdot z_{2}) = \text{Arg}z_{1} \ + \ \text{Arg}z_{2}\)
\(ii) \ \ \text{Arg}\left(\frac{z_{1}}{z_{2}}\right) = \text{Arg}z_{1} \ - \ \text{arg}z_{2}\)

Example 2.2.26.

Find the principal argument of \(\ a)\ (1 + i)\ ( - 1 - i)\ \ \ \ b)\ (\frac{- 2 + 2i}{1 - i})\)
Solution.
\(a) \ \ \text{Arg} \ (1 + i)(-1 - i) = \text{Arg} \ (1 + i) + \text{Arg} \ (-1 - i) = \frac{\pi}{4} + (\frac{-3 \pi}{4}) = \underline{\underline{\frac{-\pi}{2}}} \)
\(b) \ \ \text{Arg} \left(\frac{- 2 + 2i}{1 - i}\right) = \text{Arg}(-2 + 2i) - \text{Arg}(1 - i) = (\frac{3 \pi}{4}) - (-\frac{\pi}{4}) = \frac{4 \pi}{4} = \underline{\underline{\pi}}\)

Checkpoint 2.2.27.

Add review
 13 
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FThe-Real-and-Complex-Number-Systems-%28NS%29%2FArgument-%28amplitude%29-of-a-complex-number%2FModulus-and-Argument-of-a-Complex-Number.xml&entry.2077830997=source%2Fthe-real-and-complex-number-systems%2Fsections%2Fsubsections%2Fsec-the-set-of-complex-numbers%2Fsubsec-argument-amplitude-of-a-complex.ptx

Checkpoint 2.2.28.

Add review
 14 
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FThe-Real-and-Complex-Number-Systems-%28NS%29%2FArgument-%28amplitude%29-of-a-complex-number%2FModulus-and-Argument-of-Complex-Numbers-and-Their-Conjugates.xml&entry.2077830997=source%2Fthe-real-and-complex-number-systems%2Fsections%2Fsubsections%2Fsec-the-set-of-complex-numbers%2Fsubsec-argument-amplitude-of-a-complex.ptx

Subsection 2.2.7 Polar form of a complex number

Definition 2.2.29.

Let \(r\) and \(\theta\) be polar coordinates of the point (x, y) of the complex number \(z = x+iy\text{.}\) Since x = \(r\text{cos}\theta\)and y = \(r\text{sin}\theta\text{,}\) then the complex number can be written as : \(\underline{\underline{\ z = r(\text{cos}\theta + i\text{sin}\theta)}}\) which is called polar form, where \(r\) is modulus of \(z\) and \(\ \theta\ \)is principal argument of \(z\text{.}\)

Example 2.2.30.

Express the following complex numbers in polar form:
\(a)\ z = 1 + i \)
\(\text{solution}:\ r = \sqrt{2}\ \text{and}\ \theta = \text{tan}^{- 1}(1) = \frac{\pi}{4} \text{.}\)
\(\ \text{Thus},\ z = \sqrt{2}(\text{cos} \frac{\pi}{4} + i\text{sin} \frac{\pi}{4})\text{.}\)
\(b)\ z = 3 - 3i\ \text{solution}:\ r = \sqrt{18}\ \text{and}\ \theta = \text{tan}^{- 1}( - 1) = - \frac{\pi}{4}\text{.}\)
\(\text{solution}: \ r = \sqrt{\text{18}}\ \text{and}\ \theta = \text{tan}^{- 1}( - 1) = - \pi 4\text{.}\ \\\)
\(\text{Thus},\ z = \sqrt{\text{18}}(\text{cos} - \frac{\pi}{4} + i\text{sin} - \frac{\pi}{4}) = \sqrt{\text{18}}(\text{cos}\frac{\pi}{4} - i\text{sin}\frac{\pi}{4})\text{.} \\\)
\begin{equation*} \textbf{Multiplication and division in polar forms} \end{equation*}
\(\text{If} \ z_{1}\ = r_{1}(\text{cos}\theta_{1} + i\text{sin}\theta_{1}) \ \ \ \text{and} \ \ \ \ z_{2} = r_{2}(\text{cos}\theta_{2} + i\text{sin}\theta_{2}), \text{then}\)
\(a) \ \ z_{1} \cdot z_{2} = r_{1} \cdot r_{2}(\text{cos}(\theta_{1} + \theta_{2}) + i\text{sin}(\theta_{1} + \theta_{2}))\)
\(b) \ \ \frac{z_{1}}{z_{2}} = \frac{r_{1}} {r_{2}}(\text{cos}(\theta_{1} - \theta_{2}) + i\text{sin}(\theta_{1} - \theta_{2}))\text{.}\)
\(\textbf{Proof:}\)
\(\text{a)} \ z_{1} \cdot z_{2} = r_{1}(\text{cos}\theta_{1} + i\text{sin}\theta_{1}) \cdot r_{2}(\text{cos}\theta_{2} + i\text{sin}\theta_{2})\)
\(\ \ \ \ \ \ \ \ \ \ \ = r_{1} \cdot r_{2} \left [ \text{cos}\theta_{1}(\text{cos}\theta_{2} + i\text{sin}\theta_{2}) + i\text{sin}\theta_{1}(\text{cos}\theta_{2} + i\text{sin}\theta_{2}) \right ]\)
\(\ \ \ \ \ \ \ \ \ \ \ = r_{1} \cdot r_{2} \left [ \text{cos}\theta_{1}\text{cos}\theta_{2} + i\text{cos}\theta_{1}\text{sin}\theta_{2} + i\text{sin}\theta_{1}\text{cos}\theta_{2} - \text{sin}\theta_{1}\text{sin}\theta_{2} \right ]\)
\(\ \ \ \ \ \ \ \ \ \ \ = r_{1} \cdot r_{2} \left [ \text{cos}\theta_{1}\text{cos}\theta_{2} - \text{sin}\theta_{1}\text{sin}\theta_{2} + i(\text{cos}\theta_{1}\text{sin}\theta_{2} + \text{sin}\theta_{1}\text{cos}\theta_{2}) \right ]\)
\(\ \ \ \ \ \ \ \ \ \ \ = \underline{\underline{ r_{1} \cdot r_{2} \left [ \text{cos}(\theta_{1} + \theta_{2}) + i \ \text{sin}(\theta_{1} + \theta_{2})\right ]}}\)
\(\text{Thus,} \ z_{1} \cdot z_{2} = r_{1} \cdot r_{2}(\text{cos}(\theta_{1} + \theta_{2}) + i \ \text{sin}(\theta_{1} + \theta_{2}))\)
\(\text{b)} \ \frac{z_{1}}{z_{2}} = \frac{r_{1} (\text{cos}\theta_{1} + i\text{sin}\theta_{1})}{ r_{2} (\text{cos}\theta_{2} + i\text{sin}\theta_{2})} = \frac{r_{1}}{r_{2}} \left ( \frac{\text{cos}\theta_{1} + i\text{sin}\theta_{1}}{\text{cos}\theta_{2} + i\text{sin}\theta_{2}} \right )\)
\(\ \ \ \ \ \ \ \ = \frac{r_{1}}{r_{2}} \left ( \frac{\text{cos}\theta_{1} + i\text{sin}\theta_{1}}{\text{cos}\theta_{2} + i\text{sin}\theta_{2}} \right ) \cdot \frac{\text{cos}\theta_{2} - i\text{sin}\theta_{2}}{\text{cos}\theta_{2} - i\text{sin}\theta_{2}}\)
\(\ \ \ \ \ \ \ \ = \frac{r_{1}}{r_{2}} \left ( \frac{ \text{cos}\theta_{1}\text{cos}\theta_{2} - i\text{cos}\theta_{1}\text{sin}\theta_{2} + i\text{sin}\theta_{1}\text{cos}\theta_{2} + \text{sin}\theta_{1}\text{sin}\theta_{2} }{\text{cos}^{2}\theta_{2} + \text{sin}^{2}\theta_{2}}\right )\)
\(\ \ \ \ \ \ \ \ = \frac{r_{1}}{r_{2}} \left ( \frac{\text{cos}\theta_{1}\text{cos}\theta_{2} + \text{sin}\theta_{1}\text{sin}\theta_{2} + i(\text{sin}\theta_{1}\text{cos}\theta_{2} - \text{cos}\theta_{1}\text{sin}\theta_{2})}{1} \right )\)
\(\ \ \ \ \ \ \ \ = \underline{\underline{ \frac{r_{1}}{r_{2}} \left [ \text{cos}(\theta_{1} - \theta_{2}) + i\text{sin}(\theta_{1} - \theta_{2})\right ]}}\)
\(\text{Thus,} \ \frac{z_{1}}{z_{2}} = \frac{r_{1}}{r_{2}}(\text{cos}(\theta_{1} - \theta_{2}) + i\text{sin}(\theta_{1} - \theta_{2}))\)

Example 2.2.31.

If \(z_{1} = 6(\text{cos}\frac{\pi}{2} + i\text{sin} \frac{\pi}{2})\) and \(z_{2} = 2(\text{cos}\frac{\pi}{3} + i\text{sin}\frac{\pi}{3})\text{,}\) then find:
\(a) \ z_{1} \cdot z_{2} \ \ \ \ \ b) \ \frac{z_{1}}{z_{2}}\)
Solution.
\(\text{a) } z_{1} \cdot z_{2} = 6 \cdot 2 \left [ \text{cos}\left(\frac{\pi}{2} + \frac{\pi}{3}\right) + i\text{sin}\left(\frac{\pi}{2} + \frac{\pi}{3}\right) \right ]\)
\(\ \ \ \ \ \ \ \ = \underline{\underline{ 12\left [ \text{cos}\left(\frac{5\pi}{6}\right) + i\text{sin}\left(\frac{5\pi}{6}\right) \right ]}}\)
\(\text{b) } \frac{z_{1}}{z_{2}} = \frac{6}{2} \left [ \text{cos}\left(\frac{\pi}{2} - \frac{\pi}{3}\right) + i\text{sin}\left(\frac{\pi}{2} - \frac{\pi}{3}\right) \right ]\)
\(\ \ \ \ \ \ \ \ = \underline{\underline{ 3\left [ \text{cos}\left(\frac{\pi}{6}\right) + i\text{sincos}\left(\frac{\pi}{6}\right) \right ]}}\)
\(\text{Thus, } z_{1} \cdot z_{2} = 12\left [ \text{cos}\left(\frac{5\pi}{6}\right) + i\text{sin}\left(\frac{5\pi}{6}\right) \right ] \text{ and } \frac{z_{1}}{z_{2}} = 3\left [ \text{cos}\left(\frac{\pi}{6}\right) + i\text{sin}\left(\frac{\pi}{6}\right) \right ]\)

Definition 2.2.32.

\begin{equation*} \textbf{Argument of a product} \end{equation*}
The argument of the product of two complex numbers is the sum of their arguments.
\(\textbf{Proof:}\)
\(\text{Let } z_{1} = r_{1}(\text{cos}\theta_{1} + i\text{sin}\theta_{1}) \ \ \ \text{and} \ \ \ z_{2} = r_{2}(\text{cos}\theta_{2} + i\text{sin}\theta_{2})\)
\(\text{Now, } z_{1} \cdot z_{2} = r_{1}(\text{cos}\theta_{1} + i\text{sin}\theta_{1}) \cdot r_{2}(\text{cos}\theta_{2} + i\text{sin}\theta_{2})\)
\(\ \ \ \ \ \ \ \ = r_{1} \cdot r_{2} \left [ \text{cos}\theta_{1}(\text{cos}\theta_{2} + i\text{sin}\theta_{2}) + i\text{sin}\theta_{1}(\text{cos}\theta_{2} + i\text{sin}\theta_{2}) \right ]\)
\(\ \ \ \ \ \ \ \ = r_{1} \cdot r_{2} \left [ \text{cos}\theta_{1}\text{cos}\theta_{2} + i\text{cos}\theta_{1}\text{sin}\theta_{2} + i\text{sin}\theta_{1}\text{cos}\theta_{2} - \text{sin}\theta_{1}\text{sin}\theta_{2} \right ]\)
\(\ \ \ \ \ \ \ \ = r_{1} \cdot r_{2} \left [ \text{cos}\theta_{1}\text{cos}\theta_{2} - \text{sin}\theta_{1}\text{sin}\theta_{2} + i(\text{cos}\theta_{1}\text{sin}\theta_{2} + \text{sin}\theta_{1}\text{cos}\theta_{2}) \right ]\)
\(\ \ \ \ \ \ \ \ = \underline{\underline{ r_{1} \cdot r_{2} \left [ \text{cos}(\theta_{1} + \theta_{2}) + i\text{sin}(\theta_{1} + \theta_{2})\right ]}}\)
\(\Rightarrow \text{arg} (z_{1} \cdot z_{2}) = \text{tan}^{-1} \left ( \frac{\text{sin}(\theta_{1} + \theta_{2})}{\text{cos}(\theta_{1} + \theta_{2})} \right )\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \text{tan}^{-1} \left ( \text{tan}(\theta_{1} + \theta_{2}) \right )\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \underline{\underline{ \theta_{1} + \theta_{2}}}\)

Definition 2.2.33.

\begin{equation*} \textbf{Argument of the quotient} \end{equation*}
The argument of the quotient of two complex numbers is the difference of their arguments.
\(\textbf{Proof:}\)
\(\text{arg} \left ( \frac{z_{1}}{z_{2}} \right ) = \text{arg}(z_{1} \cdot {z_{2}}^{-1}) = \text{arg}(z_{1}) + (\text{arg} z_{2}^{-1}) = \text{arg}(z_{1}) + - (\text{arg} z_{2}) = \text{arg}(z_{1}) - \text{arg}(z_{2})\)

Example 2.2.34.

\(\text{arg} \left ( \frac{-4}{1 + \sqrt{3}\ i} \right ) = \text{arg}(-4) - \text{arg}(1 + \sqrt{3}\ i) = \pi - \frac{\pi}{3} = \frac{2\pi}{3}\)
\begin{equation*} \textbf{De Moivre's Formula} \end{equation*}
Recall the product :\(\ z_{1} \cdot z_{2} = r_{1} \cdot r_{2} \left [ \text{cos}(\theta_{1} + \theta_{2}) + i\text{sin}(\theta_{1} + \theta_{2})\right ]\text{.}\)
Similarly, we get \(z_{1} \cdot z_{2} \cdots. z_{n} = r_{1} \cdot r_{2} \cdots. r_{n} \left [ \text{cos}(\theta_{1} + \theta_{2} + \cdots + \theta_{n}) + i\text{sin}(\theta_{1} + \theta_{2} + \cdots + \theta_{n})\right ]\text{.}\)
Now we can generalize that\(z^{n} = r^{n} \left [ \text{cos}(\theta + \theta + \cdots + \theta) + i\text{sin}(\theta + \theta + \cdots + \theta)\right ]\text{.}\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \underline{\underline{ r^{n} \left [ \text{cos}(n\theta) + i\text{sin}(n\theta)\right ]}}\) which is called De Moivre’s formula.

Example 2.2.35.

Express \((2 + 2i)^{100}\) in polar form.
Solution.
\(\text{Let } z = 2 + 2i. Then, r = \sqrt{8} , \ \ \theta = \frac{\pi}{4} \) and hence
\((2 + 2i)^{100} = z^{100}\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \sqrt{8}^{100} \left [ \text{cos} 100 (\frac{\pi}{4}) + i\text{sin} 100 (\frac{\pi}{4})\right ]\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \underline{\underline{ 8^{50} \left [ \text{cos}25\pi + i\text{sin}25\pi \right ]}}\)

Example 2.2.36.

Express \((\sqrt{3} + i)^{60}\) in polar form.
Solution.
\(\text{Let } z = \sqrt{3} + i. Then, r = 2 , \ \ \theta = \frac{\pi}{6} \text{.}\)
\(\therefore (\sqrt{3} + i)^{60} = z^{60}\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = 2^{60} \left [ \text{cos} 60 (\frac{\pi}{6}) + i\text{sin} 60 (\frac{\pi}{6})\right ]\)
\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ = \underline{\underline{ 2^{60} \left [ \text{cos}10\pi + i\text{sin}10\pi \right ]}}\)

Definition 2.2.37.

\begin{equation*} \textbf{Euler's formula} \end{equation*}
The complex number \(z = r(\text{cos}\theta + i\text{sin}\theta)\) can be written in exponential form as: \(z = re^{i\theta}\) which is called Euler’s formula.
\(\text{Note:} \ \ \ \ z^{n} = r^{n} \left ( \text{cos}n \theta + i \text{sin}n\theta \right ) = r^{n} e^{{i}(n\theta)}\)

Example 2.2.38.

\(\text{Express the complex number } z = 1 + i \text{ using Euler's formula.}\)
Solution.
\(z = 1 + i\)
Now \(r = \sqrt{2}\) & \(\theta = \frac{\pi}{4} \Rightarrow z = re^{i\theta} = \underline{\underline{ \sqrt{2}e^{\frac{\pi i}{4}}}}\)

Example 2.2.39.

\(\text{Express the complex number } z = 1 + \sqrt{3}i \text{ using Euler's formula.}\)
Solution.
\(z = 1 + \sqrt{3}i\)
Now \(r = 2 \) & \(\theta = \frac{\pi}{3} \Rightarrow z = re^{i\theta} = \underline{\underline{ 2e^{\frac{\pi i}{3}}}}\)

Example 2.2.40.

\(\text{Express the complex number } z = (\sqrt{3} + i)^{7} \text{ using Euler's formula.}\)
Solution.
\(z = (\sqrt{3} + i)^{7}\)
Now \(r = 2 \) & \(\theta = \frac{\pi}{6} \Rightarrow z = re^{i\theta} = 2^{7}e^{\frac{7\pi i}{6}} = 128e^{\frac{7\pi i}{6}}\)

Checkpoint 2.2.41.

Checkpoint 2.2.42.

Subsection 2.2.8 Extraction of roots

Suppose \(z_{0} = r_0\text{e}^{\text{iΞΈ}_{0}}\ \) is the \(n^{th}\) root of a non - zero complex number \(z = re^{i \theta}\text{,}\) where \(n \geq 2\text{.}\)
Then, \(z_{0}^{n} = z\text{,}\) which implies that \(r_0^{n}\text{e}^{\text{i nΞΈ}_{0}} = re^{i \theta}\)
\(\ \ \ \ \ \ \ \Rightarrow r_0^{n} = r\) & \(\ n\theta_0 \ = \ \ \theta + 2k\pi, \ \ \ \ k = 0, 1, 2, \cdots (n - 1)\text{.}\)
\(\ \ \ \ \ \ \ \Rightarrow r_0 = (r)^{\frac{1}{n}} \ \) & \(\ \theta_0 \ = \frac{\theta}{n} + \frac{2k\pi}{n}\)
\(\therefore, \ \ \ z_{0} = \underline {\underline { (r)^{\frac{1}{n}} \left ( \text{e}^{\text{i}\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right)} \right)}} \ ,\) which is the \(n^{th}\) root of \(z\text{,}\) where \(n = 2, 3, \cdots\) and \(k = 0, 1, 2, \cdots (n - 1)\) or we can denote it by \(C_{k} \ \ \ \text{as :} \ \ C_{k} = \underline {\underline { (r)^{\frac{1}{n}} \left( \text{e}^{\text{i}\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right)} \right)}} \ ,\) where \(k = 0, 1, 2, \cdots (n - 1)\text{.}\)

Example 2.2.43.

Find the square roots of the complex number \(z = 1 + \sqrt{3}i\text{.}\)
Solution.
\(z = 1 + \sqrt{3}i\)
Here \(\ \ r = 2, \theta = \frac{\pi}{3}\)
Hence \(C_{k} = (r)^{\frac{1}{n}} \left( \text{e}^{\text{i}\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right)} \right), n = 2\ , \ k = 0, 1\text{.}\)
\(\ \ \ \ \ \ \ \Rightarrow C_{k} = (2)^{\frac{1}{2}} \left ( \text{e}^{\text{i}\left(\frac{\frac{\pi}{3}}{2} + \frac{2k\pi}{2} \right )} \right )\)
\(\ \ \ \ \ \ \ \Rightarrow C_{k} = \sqrt{2} \left( \text{e}^{\text{i}\left(\frac{\pi}{6} + k\pi\right)} \right)\)
\(i.) \ \ \text{If} \ \ k = 0\text{,}\) then \(C_{0} = \sqrt{2} \left( \text{e}^{\text{i}\frac{\pi}{6}} \right) = \sqrt{2} \left( \cos\frac{\pi}{6} + i\sin\frac{\pi}{6} \right) = \sqrt{2} \left ( \frac{\sqrt{3}}{2} + \frac{i}{2} \right ) = \frac{\sqrt{2}}{2} \left ( \sqrt{3} + i \right ) = \underline {\underline {\frac{\sqrt{6}}{2} + \frac{\sqrt{3i}}{2}}}\)
\(ii.) \ \ \text{If} \ \ k = 1\text{,}\) then \(C_{1} = \sqrt{2} \left( \text{e}^{\text{i}\left(\frac{\pi}{6} + \pi\right)} \right) = \sqrt{2} \left ( \text{cos}\frac{7\pi}{6} + i\text{sin}\frac{7\pi}{6} \right ) = \sqrt{2} \left( \frac{-\sqrt{3}}{2} - \frac{i}{2} \right) = \frac{-\sqrt{2}}{2} \left( \sqrt{3} + i \right) = \underline {\underline {\frac{-\sqrt{6}}{2} - \frac{\sqrt{3i}}{2}}}\)
\(\therefore \ \ \ \text{The square roots of} \ \ \ 1 + \sqrt{3}i \ \text{are} \ \ \ C_{0} = \frac{\sqrt{6}}{2} + \frac{\sqrt{3}i}{2} \ \ \) & \(\ \ C_{1} = \frac{- \sqrt{6}}{2} - \frac{\sqrt{3i}}{2}\text{.}\)

Example 2.2.44.

Find the cube roots of the complex number \(z = 8i\text{.}\)
Solution.
We have \(z = 8i\text{.}\) Here \(r = 8, \theta = \frac{\pi}{2}, n = 3, k = 0, 1, 2\text{.}\)
Hence, \(C_{k} = (r)^{\frac{1}{n}} \left( \text{e}^{\text{i}\left(\frac{\theta}{n} + \frac{2k\pi}{n}\right)} \right)\)
\(\ \ \ \ \ \ \ \Rightarrow C_{k} = (8)^{\frac{1}{3}} \left( \text{e}^{\text{i}\left(\frac{\frac{\pi}{2}}{3} + \frac{2k\pi}{3}\right)} \right)\)
\(\ \ \ \ \ \ \ \Rightarrow C_{k} = 2 \left( \text{e}^{\text{i}\left(\frac{\pi}{6} + \frac{2k\pi}{3}\right)} \right)\)
\(i.) \ \ \text{If} \ \ k = 0\text{,}\) then \(C_{0} = 2 \left( \text{e}^{\text{i}\frac{\pi}{6}} \right) = 2 \left( \cos\frac{\pi}{6} + i\sin\frac{\pi}{6} \right) = 2 \left( \frac{\sqrt{3}}{2} + \frac{i}{2} \right) = \underline {\underline {\sqrt{3} + i}}\ \)
\(ii.) \ \ \text{If} \ \ k = 1\text{,}\) then \(C_{1} = 2 \left( \text{e}^{\text{i}\left(\frac{\pi}{6} + \frac{2\pi}{3}\right)} \right) = 2 \left( \cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6} \right) = 2 \left( -\frac{\sqrt{3}}{2} + \frac{i}{2} \right) = \underline {\underline {- \sqrt{3} + i}}\ \)
\(iii.) \ \ \text{If} \ \ k = 2\text{,}\) then \(C_{2} = 2 \left( \text{e}^{\text{i}\left(\frac{\pi}{6} + \frac{4\pi}{3}\right)} \right) = 2 \left( \cos\frac{3\pi}{2} + i\sin\frac{3\pi}{2} \right) = 2(0 + - i) = \underline {\underline {- 2i}}\ \)
\(\therefore \ \ \ \text{The cube roots of} \ \ 8i \ \text{are} \ \ C_{0} = \sqrt{3} + i, C_{1} = -\sqrt{3} + i\) & \(C_{2} = -2i\text{.}\)

Exercises Exercises

1.
  1. Find the square roots of the complex numbers:
    \(\ \text{(a)}\ \text{z} = \frac{3i}{-1 - i}\)
    \(\ \text{(b)}\ \text{z} = \left ( \sqrt{3} - i \right )\)
  2. Show that \(\ \text{a)} \ \ \left | \text{e}^{i\theta} \right | = 1 \ \ \ \ \ \ \ \ \ \ \ \text{b)} \ \ \ \overline {\text{e}^{i\theta}} = \text{e}^{-i\theta} \)
  3. Using mathematical induction, show that \(\ \text{e}^{i\theta_{1}} \cdot \text{e}^{i\theta_{2}}. \cdots . \text{e}^{i\theta_{n}} = \text{e}^{i(\theta_{1} + \theta_{2} + \cdots + \theta_{n})} \) \(n = 2, 3, \cdots\)

Checkpoint 2.2.45.

Add review
 15 
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FThe-Real-and-Complex-Number-Systems-%28NS%29%2FExtraction-of-roots%2FComplex-Root-of-a-Cubic-Equation.xml&entry.2077830997=source%2Fthe-real-and-complex-number-systems%2Fsections%2Fsubsections%2Fsec-the-set-of-complex-numbers%2Fsubsec-extraction-of-roots.ptx

Checkpoint 2.2.46.

Add review
 16 
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FThe-Real-and-Complex-Number-Systems-%28NS%29%2FExtraction-of-roots%2FEvaluating-Square-Roots-of-Complex-Numbers.xml&entry.2077830997=source%2Fthe-real-and-complex-number-systems%2Fsections%2Fsubsections%2Fsec-the-set-of-complex-numbers%2Fsubsec-extraction-of-roots.ptx

Checkpoint 2.2.47.

Add review
 17 
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FThe-Real-and-Complex-Number-Systems-%28NS%29%2FExtraction-of-roots%2FComplex-Number-Evaluating-Fourth-Roots.xml&entry.2077830997=source%2Fthe-real-and-complex-number-systems%2Fsections%2Fsubsections%2Fsec-the-set-of-complex-numbers%2Fsubsec-extraction-of-roots.ptx

Checkpoint 2.2.48.

Add review
 18 
docs.google.com/forms/d/e/1FAIpQLSfSNI6CXkmgeSZJh6v0WKkeD9MJ9g4pEQ9r0JaowD4ovNxj5w/viewform?usp=pp_url&entry.699375810=questions%2Ftop%2FMathematics-for-NS-%26-SS-23-24-Question-Bank%2FThe-Real-and-Complex-Number-Systems-%28NS%29%2FExtraction-of-roots%2FEvaluating-Cube-Roots-of-Complex-Numbers.xml&entry.2077830997=source%2Fthe-real-and-complex-number-systems%2Fsections%2Fsubsections%2Fsec-the-set-of-complex-numbers%2Fsubsec-extraction-of-roots.ptx